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We consider the general properties of the process of adaptation on the assumption that this

phenomenon has a biochemical basis. The hypothesis is advanced on the significant difference

between the course of adaptation in the isolated system and in a complex of systems where
oscillatory kinetics may be advantageous.

INTRODUCTION

ADAPTATION processes are widespread in biology and are encountered at the most
varied levels of organization. The concept of adaptation is very wide and it appears
improbable that there is just a single mechanism underlying all adaptation phenomena.
However, it is possible that purely biochemical processes form the essence of a fairly
wide group of phenomena of physiological adaptation (if we mean by the word “‘physio-
logical” comparatively mild changes in conditions. Among them we see a narrower
group striking the imagination by the clarity of its kinetic pattern.

The normally operating system with a minor change (for example, change in tempe-
rature by 4-6°C) in the conditions “suddenly dies away” and for long “does not give
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any signs of life”. The impatient observer may consider the system dead but after
a certain time (sometimes fairly considerable) the system just as suddenly renews work
and operates “as though nothing had happened”.

The expressions in quotation marks appear at first sight to be superfluous “literature»
and undefined. However, they are most readily subject to formalization by expressing
the idea of the relaxation nature of adaptation.

1. FAST AND SLOW VARIABLES

The word ““sudden” is in essence the emotional equivalent of the statement that the
reaction time of the observer is considerably greater than the time of “operation” of the
observed system. But “suddenly” the system only changes state and it can maintajn
it for so long that the observer sometimes loses patience. Consequently, a sharp difference
in the time scale is an internal property of the system and not a subjective evaluation
of it by the observer. In the mathematical model this means the presence of a small para-
meter in the system

e dw/dt=a(w,e) (L1

and (in the simplest case) the possibility of choice of variables which leads to the break-
down of the systems into fast and slow:

e-du/dt=1f(u,v,¢), (1.2)
dv/dt=g(u,v,e). (1.3)

The kinetics of such a system is determined as is known, by the properties of the sur-
face of quasi-steady states obtained with the formal boundary transition ¢—0:

0: fo(u N V) , (l.‘)
dvjdt=g,(u,v). (1.9

This system makes it possible to find the fast variables as a function of the slow
variables:

u=¢(v) (1.6)
and substituting the values u in the equations for v:
dvldt=go(¢(v).v), (1.7)

we trace the evolution of the low variables.

All this completely contains the “methods” of quasi-steady concentrations [1].
However, even in the classical work of Tikhonov [2] the condition of closeness of actual
behaviour of systems to the limiting one was found.

This is the condition of stability of the quasi-steady point of the fast system.

Verification of this condition is in principle very simple although it may present con-
siderable technical difficulties. The algorythm of the verification consists in the calcu-
lation of the matrix of the derivatives at the point of quasi-equilibrium.

A=effouliy oo (1.8)
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and the search for its inherent values

det[A—).El:O. (1.9)
If all these numbers have negative real parts:

pi=Re; <0, (1.10)

then the system (1.2) is stable and the movement of the actual system occurs in the -
neighbourhood of the trajectories of the system (1.5) lying on the surface (1.4) of quasi-
steady states.

However, the condition of Tikhonov (1.10) is far from always fulfilled. We shall
consider on the surface of the quasi-equilibrium the points at which the quality is

fulfilled e

det|—|=0. (1.11)

These points, called the points of disruption, form the boundary separating the region
of stability from the region of instability. A series of studies by L. S. Pontryagin [3]
and his followers have been concerned with the behaviour of the system close to the
point of disruption. The essence of the phenomenon, the details of which are at present
of no interest to us, is that the trajectories “are disrupted” from the surface of quasi-
equilibrium and the quasi-steady approximation becomes crudely untrue.
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FiG. 1. “Torn trajectory’’ of relaxation oscillations. Broken line isolates region of instability in the
quasi-equilibrium curve. 4 and B—points of disruption.

F1G. 2. “Jumps” of fast variable from branch 4 to branch B and back.
F1G. 3. Breaks in experimental curve ‘“‘denoting * existence of fast stage.

This can be clearly seen from the very simple example of the system of two equations
arising from the van den Pol equation.

The qualitative pattern of the relaxation oscillations is completely determined by the
presence of the region of instability on the surface of quasi-equilibrium and by the char-
acter of the slow movement (in the dircction towards the point of disruption!) in the
stable parts of this surface. (In the plane the point of disruption coincide with the bound-
aries of the zones of monotonicity of the quasi-equilibrium curve.)

It is very instructive to compare the behaviour of the fast and slow variables. The
fast variables perform characteristic “jumps” from one state (branch A) to another
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(branch B) necessarily causing an association with sudden “movement” of the system
after the last phase in adaptation.
The slow variables remain continuous but at the points corresponding to the rup-
tures of the fast variables in the graphs of the slow variables characteristics breaks form.
The relaxation oscillations are taken as an illustration not only because of their
wide popularity but also because this is a very plausible scheme of the work of the adap-
tive mechanism in certain extreme conditions. However, more about this below.

2. OBSERVED AND HIDDEN PARAMETERS

The vital activity of the system studied is usually judged from a few clearly visible
signs of the type of growth, or movement or the consumption of substrates. The depth
processes are relatively inaccessible and experimental intervention (even with the modest
aim of observation) often ends in death of the system. Even in in vitro experiments
continuous recording is a difficult technical problem [4}, and usually one-single value z
is observed which is a fairly complex function of the concentrations (light absorption,
redox potential, evolution of gases, etc.).

z=F(u,v), 2.1

and often depends in an unknown fashion on the concentrations.

If z is the observed value and the variables u and v are the hidden variables relating
to the relaxation system then the graph of z usually has characteristic breaks typical
of fast variables.

The breaks will be absent only in the exceptional case when the observed value
depends only on the slow variables and does not depend at all on the fast ones.

However, there exists a wide class of methods of recording involving the accumula-
tion of the reaction products. In these cases the observed value z is connected with the
determining variables u and v by the differential equation

dz/dt=F(u,v,z), (2.2)

which is a particular case of the equation for a slow variable. The only difference to
that the variable z in our case does not come into the system (1.1) and may be found

only after the main system has been integrated. In essence all this is a precise mathemati-
cal formulation of the hypothesis: measurements are made so meticulously that they

do not introduce distortions not the course of the process.

Thus, the difference between the ruptures and breaks in the experimental curve
characterizes not the property of the system but the method of recording. Typical of these
classical methods of recording (for example, observation of growth) is less accuracy,
the need for accumulation and consequently, breaks in the experimental curve, often
perceived subjectively as “error” of the experiment with the resulting endeavour to
“smooth” the curve. This explains the interest which the mathematician shows in low
inertial methods of continuous recording isolating clearly, in jumps, the most interesting
determining aspect of the phenomenon—its relaxation character.
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3. RELAXATION MODEL. STATE OF ACTIVITY AND REST

A simple relaxation model of adaptation may be constructed with one fast variable
which is also the single observed value z. The second variable y is slow. It is curious
that even these minimum assumptions allow us to construct a quite meaningful model:

dyjdt=b(y,z,¢), (3.1
e-dzjdt=c(y,z,¢).

All the subsequent analysis is based on two main premises. The first is that the phe-
pomenon is only described by a mathematical model. The second is that the system has
4 working state and a state of rest which differ to the observer.

Fic. 4. Two branches of quasi-equilibrium curve: z—observed value; y——internal variable; /—state
of activity, 2—state of rest (shock), 3—experimental characterization of resting and activity state,

Since the single observed value is the variable z, then this means that the curve of
quasi-equilibrium
c(y,z,e)=0 (3.2)

has at least two different roots

zo=f(y,8), z;=g(y.¢), (3.3)

one of which corresponds to rest and the other to the active regime.
(Change in the scale of measurements of z

z=(1-0)f+(g,
{=GE-Nie-1)

leads the general case to the situation “‘yes—no’ when the value £=1 corresponds to
ativity and ¢=0 to rest. Qualitative statements of the type “moves”, “does not move”
Berefore may be considered a special case of normalizing of the observed value.)
Mathematically, this means that the curve ¢(y, z, £)=0 in the plane (y, z) has at
ttwo branches in a certain zone of change of the internal variable y.
The very possibility of observing the states of activity and rest denotes the stability
"f‘bOth these states in relation to fast movement. But, from this logically follows the
stence of an intermediate state unstable in relation to the fast movement.
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This intermediate state is difficult or even impossible to record since even a very
small change in it rapidly (in the period of the order ¢) throws over the system either
to quasi-equilibrium of activity or to the quasi-equilibrium of rest. However, the role
of this state i3 very important since it divides the plane (y, z) into the zone of extension of
states of activity and the zone of extension of states of rest.

¥
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F1G. 5. State of unstable quasi-equilibrium separating zone of activity from resting zone: /—resting
zone, 2-—boundary—unstable quasi-equilibrium, 3-——zone of activity.

FiG. 6. Spontaneous renewal of activity: I—loss of stability of state, 2—activity zone, 3—resting
zone; 4—evolution of resting state.

The next step of the analysis is to take into account the evolution of the system in the
“state” of rest. From experiments it is known that the system “present’ at rest, may
“spontaneously” renew activity. The simplest interpretation of this fact is that the judge-
ment of the state of the system merely from the observed value is too crude. The inter-
nal unobserved (for the given methods of recording) variable in fact slowly shifts along
the line of rest to the intersection with the separation line.

At this moment the state of rest loses stability in relation to the fast movement and
the system in a short time comes into a state of activity. The point y_, in Fig. 6 corre-
sponds precisely to such a critical state in which the system does not have a resting state
and may be stable only in the state of activity.

The hidden variable y undergoes at the moment of the jump insignificant changes.
However, the rate of its movement

dyldt=b(y,z,¢), (3.4

depending on the fast variable z changes significantly. The slow changes in y will
of course, continue but the character of evolution in the state of activity usually differs
from the state of rest. Mathematically, this is expressed in the fact that the equation
for y in the resting state

dyldi=b(y,f(y)), (3.5)
generally speaking is quite dissimilar to the equation in the state of activity.
dyldi=b(y,g(y)). (3.6)

For example, change in the direction of movement y is quite probable.
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The analysis so far made refers to the mechanism of return of the adaptive system
to the state of activity. The maintenance of this state allows of still simpler interpreta-
tion.

If the set of equations has true positions of equilibrium, then they are situated on the
curve of quasi-equilibrium since at the point of the true equilibrium both velocities
go to zero:

b(y,z,2)=0
3.7
ce{y,z,e)=0 37

both of the fast and slow movement. There may be several points of true equilibrium.
They correspond to quite different regimes.
The stable point in the rest line corresponds to death of the system and the stable
point in the line of activity to the stable vital activity of the system. Finally, the unstable
points separate the portions of the quasi-steady line with different types of behaviour.

4. TYPES OF ACTION. EXAMPLE OF ADAPTIVE BEHAVIOUR

Further discussion is impossible without translating into the language of the model
the most important experimental concept—the concept of action on the system. In the
actual situation it may come about in the most varied ways: change in the temperature,
mechanical damage, placing in heavy water, irradiation, etc. From the stand point
of the model only one thing counts—during the action the description of the system by
equations (3.1) is not suitable since the experimenter would have to be included m them.
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Fig. 7. Phasic portrait of adaptive system: A—point of stable activity; D—boundary of reversible

changes.

The position changes when the action ceases and the system “is left to its own fate”.
At that moment the result of the action is that the system is in the non-equilibrium state.
The further behaviour of the system and its adaptation are now determined only by the
internal properties. Such a point of view, of course, means dispensing with analysis of
the action (representing an independent task) and the concentration of attention on
the mechanism of adaptation.
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Mathematically this corresponds exactly to the task of Kosha (problem with initig)
data) for the system of equations (3.1). Therefore, hereafter by “action” we shall unde,.
stand the transfer of the depicting point of the system to one of the points of its phasic
plane. Moreover, we shall speak of the “action of P”” meaning by this that the system

1s at point P as a result of a certain action.

z, 2
i g
P Level of stable
activity
A A %
Level of stable
activity q
p* q" _
e t
F1G. 8 FiG. 9

F1G. 8. Maintenance of activity and passage to stable regime: agents P, P’ and pP”.
F16. 9. Another possible type of passage to stable regime: agents O, Q” and Q"

The classification of the actions is from this point of view tantamount to the classif-
cation of the types of behaviour of the integral curves of the system, which corresponds
to the division of the phasic plane of the system into regions of uniform behaviour,

In the example illustrated in Fig. 7 there are three such regions: zones of activity,
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FiG. 10
FiG. 10. Lag-phase RB and evolution along the line B’ A.

F1G. 11. Irreversible changes as a result of action of S: death of system.

rest and death of the system. We present some typical forms of behaviour during the
observed value z on exposure to actions of various types. In all cases we observe a char-
acteristic fast transitional process corresponding to the passage to the state of quasi
equilibrium. The symbols in Fig. 8-11 correspond to the symbols in Fig. 7.

5. STABILITY AND ADAPTIVITY

The analysis made shows that the reaction of the system to external factors must

be characterized by two different indices—stability and adaptivity.
The stability of the system is greater the farther is the point A4 from the “dangerous”
point of disruption C. In this case considerable influences are necessary to “knock out”

the system from the state of activity (Fig. 12).
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Otherwise, adaptive systems “‘tolerate” strong influences. At first they “fall into a
trance” but “‘rallying” restore the state of activity. The store of adaptivity is greater

the greater the arc BD (Fig. 13).
It is instructive to compare the extreme situations—stability without adaptivity

and adaptivity without stability.
The stable system without adaptivity (point D merged with point B) may tolerate
strong influences retaining activity. However, any influence leading to shock is tanta-

z}
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FiG. 12 Fig. 13

Fi1G. 12. Stable but little adaptive system.
FiG. 13. Adaptive system with low stability store.

mount to the death of the system, since during evolution along the line DE irreversible
changes develop in the system and it sometimes no longer returns to the state of ac-
tivity.

On the other hand, a well-adaptive system without stability (point 4 on the arc BC)
retains the ability to come out of the shock state. It however loses the ability to retain
activity and periodically (an oscillatory regime develops wich in no wise differs from the
relaxation oscillations depicted in Fig. 1) goes into shock spontaneously without
external influence but all the same, the system does not die.

Consequently, stability and adaptivity are essentially different pathways of stabili-
zation of the systems.

Stable systems operate more and more productively. They correspond well to favour-
able conditions but rapidly die in unfavourable conditions.

Adaptive systems operate worse and often “die out” but are capable of working
in difficult conditions.

6. EVOLUTIONARY SIGNIFICANCE OF ADAPTIVE OSCILLATIONS

Until now, the term “‘evolution” has been used in the narrow technical sense—slow
movements in the systeni (3.1).

A wider interpretation of this term—even slower change in the form of the right
hand sides (in particular, of the coefficients) of the system of equations—corresponds
better to the meaning which biologists impart to this word.

With such an interpretation one may raise the question of interaction of the system
with the medium considering the system and the medium as parts of a wider system,
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It is plausible that with such a posing of the problem one may demonstrate the gradual
development of activity in poorly adaptive systems placed in an unfavourable (but not)
destructive) medium.

On the other hand, adaptive systems in a favourable medium will increase in sta-
bility and working capacity, of course, through fall in adaptivity.

The expectation of the validity of such statements is all the more justified since a
similar problem in discrete interpretation (games of automata) was raised by Tse-
tlin [5] and similar statements demonstrated.

We shall now consider a more general scheme taking into account the spatial in-
homogeneity of the medium.

We shall assume that in a certain direction the conditions worsen and a boundary
exists beyond which the conditions become fatal for the existing “colony’’ of systems,
In such a situation an “adaptivity” gradient will gradually appear in the colony. Closer
to the boundary the systems will become ever more adaptive “paying for this”” with their
stability. The new more adaptive systems can penetrate beyond the old boundary. This
expansion will be arrested only by the exhaustion of the “store” of stability. At the
new boundary, only systems adaptive without stability can exist. But we already know
that in this case the system will inevitably become auto-oscillatory.

This circumstance produces a quite new situation for the colony as a whole. For the
individual system (cell) auto-oscillations are an indication of extremely unfavourable
conditions but for the colony as a whole they may be on organizing factor. In particular,
the nearest neighours with their negligibly small stability store will be drawn into auto-
oscillations. In such conditions resonance formations {6] of supracellular level are pos-
sible.

It is very tempting to compare the auto-oscillatory pattern formed with the sponta-
neous electrical activity of the nerve cell. Of course, the comparison must be literate
in evolutionary terms. Comparison may be made either with objects standing at the
boundary of the cell and multi-cellular organism or with the stage of embryogenesis
at which the laying down of the nerve cells occurs. Comparison with evolutionary ma-
ture nerve cells where the original “distress” is morphologically fixed and has received
the sense of a signal will hardly be productive.
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